
Notes for seminar on covering numbers

These are notes for a few seminar talks on covering numbers delivered in win-
ter 2010, on March 8, 15, 22, and April 18.

1 Covering numbers

Given sets A,B � R
n, we define the covering number of A by B as

N(A,B) = inf {card(T) : A � T + B} ,

where card denotes the counting measure. Recalling that T +B =
S
t2T (t+B),

we see that N(A,B) is the smallest number of translates of B that suffices to
coverA. (By the well-ordering principle, if it is possible to coverAwith finitely
many translates of B, then the infimum in the definition is attained.)

Covering numbers satisfy a multiplicative triangle inequality:

N(A,C) � N(A,B)N(B,C) . (1)

The idea is to construct a covering ofA by translates of C as follows: first cover
A by translates of B, then cover each translate of B by translates of C. The
formal proof: Suppose A � S + B and B � T + C. Then A � S + (T + C) =

(S + T) + C, and so N(A,C) � card(S + T) � card(S � T) = card(S) card(T).
Optimizing S and T yields (1). �

Adding the sets of translation vectors also yields

N(A+ B,C+D) � N(A,C)N(B,D) . (2)

Similar methods yield the following obvious statements:

• If A � A 0 then N(A,B) � N(A 0, B). (Larger sets are harder to cover.)

• If B � B 0 then N(A,B) � N(A,B 0). (Larger sets are better at covering.)

• 1
2
(N(A,B)+N(A 0, B)) � N(A,B)∨N(A 0, B) � N(A[A 0, B) � N(A,B)+

N(A 0, B). (Here ∨ denotes maximum.)

• N(A+ t, B) = N(A,B) for any t 2 Rn.

• N(A,B+ t) = N(A,B) for any t 2 Rn.

• N(TA, TB) � N(A,B) for any linear map T 2 L(Rn), with equality when
T is invertible. (A case of some interest to us is when T is a projection
onto a lower-dimensional subspace.)
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2 Covering from the inside

For some purposes it is desirable to have a cover in which the reference points
of the translates lie inside the set being covered. We accordingly define the
covering number from inside of A by B by

N(A,B) = inf {card(T) : T � A � T + B} .

This number does not satisfy the multiplicative triangle inequality, but it does
satisfy an inequality like (2):

N(A+ B,C+D) � N(A,C)N(B,D) , (3)

and using the same proof.
Obviously N(A,B) � N(A,B). For an inequality of the reverse type, we

want to take a cover of A by translates of B and construct a cover from points
inside A.

Suppose A � T + B. For each t 2 T , the translate t + B covers a certain
portion of A, namely A \ (t + B). We will choose some point s in this portion
of A and make s responsible for covering this portion of A. We cannot be sure
that s+ Bwill cover A \ (t+ B), so we should cover by some other set instead
of B. If a 2 A\ (t+B). we will need a−s to be in the set being used to coverA;
since a 2 t+B and s 2 t+B, we have a−s 2 B−B; thusA\(t+B) � s+B−B.
Choosing one point s for each point t yields

N(A,B− B) � N(A,B) .

In short, we can assume the translation vectors are in A, at the cost of passing
from covering by B to covering by B− B.

In fact, this argument gives the slightly stronger result

N(A,B− B) � N(A, (A−A) \ (B− B)) � N(A,B) . (4)

For example, we can use this fact to pass from coverings to coverings in
sections. Assume for simplicity that K and L are symmetric and convex. If E is
a subspace of Rn, then (4) yields

N(K \ E, 2(K \ L \ E)) � N(K \ E, L) � N(K, L) .

Sasha pointed out that if B is (a multiple of) the Euclidean ball Bn2 , and A is
convex, then in fact we lose nothing by moving the centres into A:

N(K,Bn2 ) = N(K,Bn2 ) if K convex. (5)

The idea is to move the centre of each translate t + Bn2 to the closest point
in K; writing p(t) for that closest point, one can show that K \ (t + Bn2 ) �
K \ (p(t) + Bn2 ).
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3 Separated points

Let A,B � R
n. Let us define

A is separated by B ⇐⇒ (8x, y 2 A : x 6= y =⇒ (x+ B) \ (y+ B) = ?) . (6)

Thus, such a set A consists of translation vectors for a pairwise disjoint collec-
tion of translates of B.

The condition of translates being disjoint is closely related to the Minkowski
difference of two sets, since

(x+A) \ (y+ B) 6= ? ⇐⇒ x− y 2 B−A . (7)

Proof (⇒) If (x+A)\ (y+B) 6= ? then there exists z 2 Rn such that z 2 x+A
and z 2 y+B, that is, z−x 2 A and z−y 2 B, so x−y = (z−y)−(z−x) 2 B−A.
(⇐) If x− y 2 B−A then there exist a 2 A and b 2 B such that x− y = b− a,
that is, x+ a = y+ b. Since x+ a 2 x+A and y+ b 2 y+ B, we are done. �

The condition of one set being separated by another can thus be restated in
terms of difference sets:

A is separated by B ⇐⇒ (A−A) \ (B− B) � {0} (8)

(If A and B are non-empty, we actually have =, not just �.)

Proof A is separated by B⇐⇒ (8x, y 2 A : x 6= y =⇒ (x+ B) \ (y+ B) = ?)⇐⇒ (8x, y 2 A : (x+ B) \ (y+ B) 6= ? =⇒ x = y)⇐⇒ (8x, y 2 A : x− y 2 B− B =⇒ x = y) (by (7))⇐⇒ (8z 2 A−A : z 2 B− B =⇒ z = 0) (z := x− y)⇐⇒ (A−A) \ (B− B) � {0}
�

From (8) we see that the condition of being separated by B depends not on
B but only on B − B. Thus, for example, A is separated by B iff A is separated
by −B, showing that

M(A,B) =M(A,−B) . (9)

A curious consequence of (8) is that A is separated by B iff B is separated
by A. We don’t usually use this because we usually take A to be a discrete,
finite set of translation vectors and B to be the unit ball of a norm (or at least, a
convex body), so the roles of A and B are quite different.

It is also interesting (but perhaps not important) that the set (A−A)\(B−B)
occurs both in (8) and in (4).
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We can pass between coverings and separated points by the following in-
equalities forM(A,B), which resemble (4):

N(A,B− B) �M(A,B) � N(A,B) . (10)

The left-hand inequality requires that B 6= ?.

Proof Upper inequality: By (9), it suffices to show that M(A,B) � N(A,−B).
For this, note the obvious fact that

x 2 t+ B ⇐⇒ t 2 x− B .

Consequently,

x 2 (s+ B) \ (t+ B) ⇐⇒ {s, t} � x− B .

That is, the intersection of two translates of B is exactly the set of reference
points for which a translate of −B covers the two given reference points. So
if T � A and T is separated by B, so that the translates t + B (for t 2 T ) are
pairwise disjoint, then no two points in T can be covered by the same translate
of −B; therefore any cover of T (and thus any cover of A) by translates of −B
needs at least card(T) points. ThusM(A,B) � N(A,−B).

Lower inequality: Let T � A be a set separated by B and maximal for these
conditions. (If no such set exists, then M(A,B) = ∞ and we are done.) By
maximality, we have

(8a 2 A \ T : 9t 2 T : (a+ B) \ (t+ B) 6= ?)⇐⇒ (8a 2 A \ T : 9t 2 T : a− t 2 B− B) (by (7))⇐⇒ (8a 2 A \ T : 9t 2 T : a 2 t+ B− B)⇐⇒ A \ T � T + B− B

Since B 6= ?, we have 0 2 B−B, whence T � T +B−B. ThusA = (A\ T)[ T �
T + B− B, showing that N(A,B− B) � card(T). �

We can get the difference set B − B on the right-hand side of (10) as well, if
B is convex. For this, first note that

1
2
(B− B) − 1

2
(B− B) = 1

2
B− 1

2
B− 1

2
B+ 1

2
B

= 1
2
(B+ B) − 1

2
(B+ B)

� B− B

with equality when B is convex. Thus

(A−A) \ (1
2
(B− B) − 1

2
(B− B)) � (A−A) \ (B− B) ,
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with equality when B is convex. By (8), it follows that

A is separated by 1
2
(B− B) =⇒ A is separated by B ,

and the converse holds if B is convex. Thus

M(A, 1
2
(B− B)) �M(A,B) , with equality when B is convex. (11)

Combining the equality situation with (10) yields

N(A,B− B) �M(A,B) � N(A, 1
2
(B− B)) if B is convex. (12)

4 Volume estimates

In this section, assume all relevant sets are measurable and of positive, finite
measure.

The most basic volume estimate for covering numbers is given by noting
that if A � T + B, then

vol(A) � vol(T + B) = vol
� [
t2T

(t+ B)
�
�

∑
t2T

vol(t+ B) = card(T)vol(B) .

This shows that
vol(A)
vol(B)

� N(A,B) . (13)

ForM(A,B), we have

vol(A)
vol(B− B)

�M(A,B) � vol(A+ B)

vol(B)
. (14)

Proof The upper estimate follows by noting that if T � A and T is separated
by B, then the translates t+ B for t 2 T are disjoint, so that

card(T)vol(B) = vol(T + B) � vol(A+ B) .

The lower estimate follows by (13) and (10). �

Examples Conspicuously missing in (13) is an upper estimate for N(A,B) in
terms of volumes. To illustrate some techniques for obtaining such estimates,
we consider N(K, εK), where K is a convex body and 0 < ε � 1.

1. First, the lower bound. By (13), we have

N(K, εK) � vol(K)
vol(εK)

=

�
1

ε

�n
.
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2. If K is symmetric, then εK = ε
2
K − ε

2
K, so we can use the upper estimate

onM:

N(K, εK) = N(K, ε
2
K− ε

2
K)

�M(K, ε
2
K) (by (10))

� vol(K+ ε
2
K)

vol(ε
2
K)

(by (14))

=
(1+ ε

2
)n

(ε
2
)n

=

�
1+

2

ε

�n
�
�
3

ε

�n
(since ε � 1)

3. If K is not symmetric, we can replace εK with something symmetric and
smaller, and then use the same technique as in the previous item. Thus

N(K, εK) � N(K, ε(K \−K)) � vol(K+ ε
2
(K \−K))

vol(ε
2
(K \−K))

� vol(K+ ε
2
K)

vol(ε
2
(K \−K))

�
�
1+

2

ε

�n vol(K)
vol(K \−K)

.

Nothing in this argument so far uses the choice of origin; so now we
choose the origin to minimize vol(K)/vol(K \ −K). From [10] we know
that if we choose the origin randomly inside K then this ratio has ex-
pected value 2n; from [5] we know that if we take the centroid of K as the
origin then this value is at most 2n. Thus we get

N(K, εK) �
�
2+

4

ε

�n
�
�
6

ε

�n
.

4. We can also use the Rogers–Zong lemma [9], which asserts that if K and
L are convex bodies then

N(K, L) � θ(L)vol(K− L)

vol(L)
,

where θ(L) is the “covering density” of L. (If we cover Rn by translates
of L in the most economical way, the density of the resulting covering is
θ(L); if L tilesRn then θ(L) = 1; if the covering has some overlap between
translates of L then θ(L) > 1.) Furthermore, from [7] we have

θ(L) � 7n logn .
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(See the next section for a little more information about these results.)
Finally, the Rogers–Shephard inequality [8] asserts that

vol(K− L)vol(K \ L) �
�
2n

n

�
vol(K)vol(L) .

Putting all this together yields

N(K, εK) � θ(εK)vol(K− εK)

vol(εK)
� θ(K)

�
2n

n

�
vol(K)vol(εK)

vol(εK)vol(K \ εK)

� θ(K)
�
2n

n

��
1

ε

�n
� 7n logn

�
4

ε

�n
5. The Rogers–Zong lemma also applies when K is symmetric; a computa-

tion similar to the above (but slightly simpler) yields

N(K, εK) � 7n logn
�
2

ε

�n
in this case.

Volume estimates can also be obtained using measures other than Lebesgue
measure. An argument by Talagrand is of this type, and shows

M(Bn2 , K) � 2e2`(K)
2

if K is a symmetric convex body, (15)

where `(K) is the gaussian average of the K-norm, that is,

`(K) =

∫
Rn

kxkK dγn(x) .

Now, `(K) ∼
p
nM(K) (see [11], p.24), so combining (15) with (10) yields

N(Bn2 , K) � 2ecnM(K)2 . (16)

This is known as the dual Sudakov inequality. (See [6]. The proof given below
is a later one by Talagrand; see [3], pp. 82–83. For a slightly more general
version, see [4], Lemma 4.)

The argument for (15) (given below) requires that K be symmetric, but sym-
metry is not essential in (16); indeed,

N(Bn2 , K) � N(Bn2 , K \−K) � 2ecnM(K\−K)2 ,

and

M(K \−K) =

∫
Sn−1

kθkK\−K dσ(θ) =
∫
Sn−1

(kθkK ∨ kθk−K)dσ(θ)

�
∫
Sn−1

(kθkK + kθk−K)dσ(θ) = 2M(K) ,
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so for asymmetric bodies we obtain (16) with a slightly worse constant.
Now to prove (15).

Proof Let r > 0 be chosen later. Let T � rBn2 be such that {t + rK : t 2 T } are
pairwise disjoint and card(T) �M(rBn2 , rK) =M(Bn2 , K). Then

1 � γn(T + rK)

=
∑
t2T

γn(t+ rK)

=
∑
t2T

∫
t+rK

e−|x|2/2 dx

(2π)n/2

=
∑
t2T

∫
rK

e−|x+t|2/2 dx

(2π)n/2

=
∑
t2T

e−|t|2/2

∫
rK

e−hx,tie−|x|2/2 dx

(2π)n/2

=
∑
t2T

e−|t|2/2

∫
rK

e−hx,ti dγn(x)

=
∑
t2T

e−|t|2/2γn(rK)Ee
−hX,ti

(where X is a standard gaussian random variable truncated to rK)

�
∑
t2T

e−|t|2/2γn(rK)e
−hEX,ti (Jensen’s inequality)

=
∑
t2T

e−|t|2/2γn(rK)e
−h0,ti (X is symmetric)

=
∑
t2T

e−|t|2/2γn(rK)

� card(T)e−r
2/2γn(rK) (since T � rBn2 )

Finally, taking r = 2`(K), we have γn(rK) � 1
2

by Markov’s inequality, and so

card(T) � er
2/2

γn(rK)
� 2e2`(K)2 .

�

5 Covering density

Here we sketch the proofs of the Rogers–Zong lemma [9] (which estimates cov-
ering numbers using covering density) and the 1957 result of Rogers [7] (which
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estimates covering density). I omit all details, and even some crucial defini-
tions, such as that of covering density itself. Intuitively, θ(K) is the density of
the most economical covering of Rn by translates of K. (For precise definitions,
see [7], or [1], §1.1.) What matters for us is that if T is the set of reference points
for the most economical covering Rn = T +K, then for any set A, the translates
of A contain on average (in some sense) θ(K)vol(A)/vol(K) points of T .

If K and L are convex bodies in Rn then

N(K, L) � θ(L)vol(K− L)

vol(L)
. (17)

Proof sketch LetRn = S+L be a covering ofRn by translates of L, with density
θ(L). Then, for any t 2 Rn, t+K � S+ L. But we do not need all the translates
given by S to cover a particular t+ K; the translates that matter are:

s+ Lmatters ⇐⇒ (s+ L) \ (t+ K) 6= ?⇐⇒ s− t 2 K− L⇐⇒ s 2 t+ K− L

Thus we can cover t+ K with card(S \ (t+ K− L)) translates of L. We wish to
choose t to make card(S \ (t + K − L)) small; as discussed a moment ago, on
average (in some sense) this quantity is θ(L)vol(K− L)/vol(L). �

If K is a convex body in Rn, n � 3, then

θ(K) � n logn+ n log logn+ 5n . (18)

Proof sketch Tile Rn with large cubes, say of side length R, and cover each
cube as follows. First chooseN translates of K randomly (N large, chosen later),
obtaining T1 + K, card(T1) = N. (These translates cover at least 1 − e−N/R

n

of
the cube, if we assume wlog that vol(K) = 1.) Then pack the uncovered space
with translates of −δK (δ small, chosen later), obtaining T2 − δK, card(T) =M.
(BoundM by a volume argument.) By the maximality of the packing, all points
in the cube are either close to a copy of K from T1 or a copy of −δK from T2.
It can then be shown that (T1 [ T2) + (1 + δ)K covers the cube, with density
(1 + δ)n(N + M)/Rn. A suitable choice of parameters δ,N,M,R yields the
desired estimate. �

See chapter 1 of [1] for comprehensive information about covering density.

6 Small sections from covering by the ball

Here we show that if a convex body is small in the sense that it can be cov-
ered by not too many copies of Bn2 , then it is small in the sense that it has
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k-dimensional sections that are contained in balls that are not too large. More
precisely:

If K is a convex body in Rn

and A 2 R is such that N(K,Bn2 )
1/n � A,

then for any k 2 [1..n),
there exists E 2 Gn,k
such that K \ E � (24A)1/(1−

k
n
)(Bn2 \ E).

(19)

(Here Gn,k denotes the set of k-dimensional subspaces of Rn, and [1..n) =

Z\ [1, n).) Note that the size of the sections in the conclusion depends only on
the covering parameter A and on the proportion k

n
between the dimension of

the section and the dimension of the whole space.
The statement (19) closely resembles the volume ratio theorem (see [11], §3);

the constants are different, and the hypothesis involves covering numbers in-
stead of volumes, but otherwise they are the same. So we suspect that we could
prove (19) by transforming the hypothesis N(K,Bn2 )

1/n � A into a statement
comparing vol(K) and vol(Bn2 ) (presumably using the estimates of §4) and then
applying the volume ratio theorem. The only difficulty with this plan is that
the volume ratio theorem requires K � Bn2 (so that k � kK is Lipschitz, a fact
which plays an essential role in the proof), and we do not have this in (19). The
maneuver which avoids this problem is to replace Kwith K+ Bn2 .

Proof Let K and A be as in (19). Then

vol(K+ Bn2 )

2n vol(Bn2 )
� N(K+ Bn2 , 2B

n
2 ) � N(K,Bn2 )N(Bn2 , B

n
2 ) � An .

Thus Bn2 � K + Bn2 and (vol(K + Bn2 )/vol(Bn2 ))
1/n � 2A. The volume ratio

theorem then yields sections such as described in (19). �

In fact we can deduce the volume ratio theorem from (19) as well (again,
except for the exact constants): if K � Bn2 and (vol(K)/vol(Bn2 ))

1/n � A then

N(K,Bn2 ) �M(K, 1
2
Bn2 ) (Bn2 is symmetric and convex)

� vol(K+ 1
2
Bn2 )

vol(1
2
Bn2 )

� vol(K+ 1
2
K)

vol(1
2
Bn2 )

(since Bn2 � K)

= 3n
vol(K)

vol(Bn2 )

� (3A)n

Applying (19) then yields sections as desired.
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We now give a direct proof of (19), using ideas similar to those in the proof
of the volume ratio theorem. We will in fact show that subspaces such as de-
scribed not merely exist, but that a random subspace has this property with
high probability.

Proof Let r > 0 be chosen later.
(The idea: If r is small enough, then rK \ Sn−1 has small measure, since

convex bodies are spiky. A random subspace E will miss rK \ Sn−1, and so
rK \ E does not meet Sn−1, whence rK \ E � Bn2 \ E.)

Fix E0 2 Gn,k. Choose Q 2 O(n) randomly according to the Haar proba-
bility measure. Then

P(QE0 meets rK \ Sn−1)
= P(9θ 2 Sn−1 \ E0 : Qθ 2 rK)
� P(9θ 2 Λ : dist(Qθ, rK) < r) (let Λ be an r-net for Sn−1 \ E0)

= P(9θ 2 Λ : Qθ 2 eK) (set eK = (rK+ rBn2 ) \ Sn−1)

� card(Λ)σ(eK)
where, as usual, σ denotes the uniform probability measure on Sn−1.

To show existence, then, we want card(Λ)σ(eK) < 1, while to show high
probability, we want card(Λ)σ(eK) << 1.

We can choose Λ such that

card(Λ) � 1

σk(cap of Euclidean radius r
2
)
� 1

(cr)k−1
,

where σk denotes the uniform probability measure on Sk−1 (see [11], p.20). To
estimate σ(eK), first note thateK = (rK+ rBn2 ) \ Sn−1

� (T + rBn2 + rBn2 ) \ Sn−1
= (T + 2rBn2 ) \ Sn−1

This last set is the union of card(T) caps, each of radius at most cr. Indeed, if
t 2 T and θ 2 (t+ 2rBn2 ) \ Sn−1 then����θ− t

|t|

���� = 2 sin(1
2

arcsin dist(θ, span {t}))

� 2 sin(1
2

arcsin 2r) (since θ 2 t+ 2rBn2 )

� arcsin 2r (since sin x � x for x � 0)
� πr (since arcsin is convex on [0, 1])

Therefore

σ(eK) � card(T)σn(cap of radius cr) � An(cr)n−1 .
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(At this point we see why this strategy works: on the one hand, making r
smaller means we need more points in Λ so we have more chances to hit eK; on
the other, making r smaller means eK gets smaller and so easier to miss; butΛ is
getting bigger at a rate like rk−1 while eK is getting smaller at a rate like 1/rn−1,
so the latter phenomenon wins.)

Putting it altogether, we have

P(QE0 meets rK \ Sn−1) � (cA)nrn−k .

For existence, then, we require (cA)nrn−k < 1, that is,

(cA)1/(1−
k
n
) <

1

r
,

so we take such r. For high probability, we may require, say, (cA)nrn−k < 1
2n

,
that is, (2cA)nrn−k < 1, which is the same condition as for existence, except
for the constant. �

7 Large sections from covering of the ball

Here we prove a statement which is, in spirit at least, dual to (19). We will
show, more or less, that if a convex body is large in the sense that not too many
copies of it are needed to cover Bn2 , then it is large in the sense that it has k-
dimensional projections that contain large balls. The statement will, however,
not be as strong as this suggests, since our hypothesis will require more infor-
mation about covering, and the conclusion is subject to a few conditions. The
precise statement:

There is a constant c > 0 such that
if K is a convex body in Rn

and A 2 R is such that 8r > 0 : N(Bn2 , rK) � 2eAn/r
2

,
then for any k 2 N such that k � n− c

p
n,

there exists E 2 Gn,k
such that projE K �

cp
A

 
1−

r
k

n

!2
projE B

n
2 .

(20)

(My presentation here is based on [4], which gives generalizations of this type
of statement for quasi-convex bodies; see that paper for references to previous
results.)

The main hypothesis in (20) is a control on how fast the covering number
grows as the covering body shrinks. This hypothesis is not too strange, in view
of (16), which implies such an inequality with A = cM(K)2.

The main condition on the conclusion in (20) is that the dimension of the
subspace onto which we project is not entirely arbitrary, e.g., we cannot have
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k = n − 1. Still, if we are only concerned with the proportion k
n

, the condition
is not severe, since we can make any desired proportion allowable by taking n
large enough. (More precisely: for any λ 2 (0, 1), if n is sufficiently large, then
for any k � λn there exist projections as in (20).)

To prove (20) we need two lemmas. First, a statement from [11], p.18: Sup-
pose A � R

n is bounded, K � R
n is closed and convex, and 0 � λ < 1. Then

A � (1− λ)K+ λA =⇒ A � K .

An immediate corollary is that, with the same assumptions on A, K, and λ,

A � K+ λA =⇒ (1− λ)A � K . (21)

Second, we need the following result of Johnson and Lindenstrauss ([2],
Lemma 1), which asserts if you have a collection of (not too many) points in
R
n, then for most projections, the images of these points are all about the same

length. To be precise:

There is a constant c > 0 such that
for any ε > 0, n 2 N, and k 2 [1..n],
if N � eckε2

,
then for any points (xi)N1 in Rn,
and any orthogonal projection P of rank k,
we have µ(Q 2 O(n) : (8i 2 [1..N] : |PQxi|

ε� Dn,k|xi|)) � 1−2e−ckε2

,
where Dn,k = Γ(n

2
)Γ(k+1

2
)/Γ(n+1

2
)Γ(k

2
),

µ is the Haar probability measure on O(n),
and x

ε� ymeans that (1− ε)y � x � (1+ ε)y.

(22)

First note that |PQxi| = |Q−1PQxi|, and ifQ ranges overO(n), thenQ−1PQ

ranges over all projections of rank k; thus Q−1PQ is a natural implementation
of a “random projection”.

Next, note thatDn,k = E|Pθ|, where θ is uniformly distributed on Sn−1 and
P is any orthogonal projection of rank k. (This expected value can be computed
by changing the integral over the sphere into a gaussian integral; see [11], p.23)

By Stirling’s approximation, Dn,k ∼

q
k
n

as k, n→ ∞, and in fact,

1

2

r
k

n
< Dn,k <

r
k

n
.

Proof sketch Fix P. The function Sn−1 → R, θ 7→ |Pθ| is Lipschitz, so it concen-
trates around its average:

σ
�
θ 2 Sn−1 : ��|Pθ|−Dn,k�� > t� � ce−cnt2 .
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Taking t = εDn,k yields

σ(θ 2 Sn−1 : |Pθ| > (1+ ε)Dn,k) � ce−cnD
2
n,kε

2 � ce−ckε2

.

Thus, for fixed θ 2 Sn−1,

µ(Q 2 O(n) : |PQθ| > (1+ ε)Dn,k) � ce−ckε
2

,

and so for fixed (θi)
N
1 � Sn−1,

µ(Q 2 O(n) : (9i : |PQθi| > (1+ ε)Dn,k) � cNe−ckε
2

,

so that if N � eckε2/2, then we obtain the desired estimate. �

Now we can prove (20).

Proof Let c 0 be the constant from (22). Let K and A be as in (20). Assume

p
k � p

n−

r
8 ln 2
c 0

.

Set

ε =
1

2

�
1

Dn,k
− 1

�
.

Note that ε > 0 and that c 0ε2k > 2 ln 2. Let r be such that 2eAn/r
2

= ec
0ε2k;

note that

r =

r
An

c 0ε2k− ln 2
<

r
2An

c 0ε2k
=
1

ε

r
2A

c 0

r
n

k
.

Let T � R
n be such that T � Bn2 � T + rK and card(T) � ec

0ε2k. Note that
2e−c

0ε2k < 1. Thus (22) yields an orthogonal projection P of rank k such that,
for all t 2 T , |Pt| � (1+ ε)Dn,k|t|, and so PT � (1+ ε)Dn,kB

n
2 . Therefore

PBn2 � PT + rPK � (1+ ε)Dn,kPB
n
2 + rPK .

Since (1+ ε)Dn,k < 1, it follows by (21) that

PK � 1

r
(1− (1+ ε)Dn,k)PB

n
2

�
r
c 0

2A

r
k

n
ε(1− (1+ ε)Dn,k)PB

n
2

The value of ε was chosen to minimize this expression; plugging it in yields
(for suitable constant c)

PK � cp
A

 
1−

r
k

n

!2
PBn2 ,

as desired. �
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