Notes for seminar on covering numbers

These are notes for a few seminar talks on covering numbers delivered in win-
ter 2010, on March 8, 15, 22, and April 18.

1 Covering numbers
Given sets A, B C R™, we define the covering number of A by B as
N(A,B) =inf{card(T): A C T + B},

where card denotes the counting measure. Recalling that T+ B = (J,.r(t + B),
we see that N(A, B) is the smallest number of translates of B that suffices to
cover A. (By the well-ordering principle, if it is possible to cover A with finitely
many translates of B, then the infimum in the definition is attained.)

Covering numbers satisfy a multiplicative triangle inequality:

N(A, C) < N(A,B)N(B,C) . 1)

The idea is to construct a covering of A by translates of C as follows: first cover
A by translates of B, then cover each translate of B by translates of C. The
formal proof: Suppose A C S+Band B C T+ C. ThenA C S+ (T+C) =
(S+T)+ C,and so N(A,C) < card(S+ T) < card(S x T) = card(S) card(T).
Optimizing S and T yields (1). O

Adding the sets of translation vectors also yields

N(A+B,C+ D) <N(A,C)N(B,D). ()
Similar methods yield the following obvious statements:
e If A C A’ then N(A,B) < N(A',B). (Larger sets are harder to cover.)
e If B C B’ then N(A, B) > N(A, B’). (Larger sets are better at covering.)

3(N(A,B)+N(A’,B)) <N(A,B)VN(A',B) < N(AUA',B) < N(A,B) +
N(A’,B). (Here V denotes maximum.)
N

(A+1t,B) =N(A,B) forany t € R™.
e N(A,B+1t) =N(A,B) forany t € R™.

o N(TA,TB) < N(A,B) for any linear map T € L(R™), with equality when
T is invertible. (A case of some interest to us is when T is a projection
onto a lower-dimensional subspace.)
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2 Covering from the inside

For some purposes it is desirable to have a cover in which the reference points
of the translates lie inside the set being covered. We accordingly define the
covering number from inside of A by B by

N(A,B) =inf{card(T): TC A CT + B}.

This number does not satisfy the multiplicative triangle inequality, but it does
satisfy an inequality like (2):

N(A +B,C+ D) < N(A,C)N(B,D), 3

and using the same proof.

Obviously N(A,B) < N(A,B). For an inequality of the reverse type, we
want to take a cover of A by translates of B and construct a cover from points
inside A.

Suppose A C T + B. For each t € T, the translate t + B covers a certain
portion of A, namely A N (t + B). We will choose some point s in this portion
of A and make s responsible for covering this portion of A. We cannot be sure
that s + B will cover A N (t + B), so we should cover by some other set instead
of B. If a € AN(t+B). we will need a—s to be in the set being used to cover A;
sincea € t+Bands € t+B,wehavea—s € B—B;thus An(t+B) C s+B—B.
Choosing one point s for each point t yields

N(A,B—B)<N(A,B).
In short, we can assume the translation vectors are in A, at the cost of passing
from covering by B to covering by B — B.
In fact, this argument gives the slightly stronger result

N(A,B—B) <N(A,(A-A)N (B—B)) <N(A,B). (4)

For example, we can use this fact to pass from coverings to coverings in
sections. Assume for simplicity that K and L are symmetric and convex. If E is
a subspace of R™, then (4) yields

N(KNE,2(KNLNE)) < N(KNE,L) < N(K,L).

Sasha pointed out that if B is (a multiple of) the Euclidean ball B}, and A is
convex, then in fact we lose nothing by moving the centres into A:

N(K,B%}) = N(K,B}) if K convex. (5)

The idea is to move the centre of each translate t + B} to the closest point
in K; writing p(t) for that closest point, one can show that K n (t + BY) C
Kn (p(t) +BY).
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3 Separated points
Let A,B C R™. Let us define
Aisseparated by B < (Vx,y€ A:x#y = (x+B)N(y+B)=0). (6)

Thus, such a set A consists of translation vectors for a pairwise disjoint collec-
tion of translates of B.

The condition of translates being disjoint is closely related to the Minkowski
difference of two sets, since

x+A)N(y+B)#9 &< x—y€eEB—-A. (7)

Proof (=)If (x+A)N(y+B) # o then there exists z € R™ such thatz € x+A
and z € y+B, thatis,z—x € Aandz—y € B,sox—y = (z—y)—(z—x) € B—A.
(&)Ifx —y € B— A thenthereexista € Aand b € Bsuchthatx—y=b—aq,
thatis,x + a=y+b.Sincex+a€x+Aandy+b €y + B, wearedone. O

The condition of one set being separated by another can thus be restated in
terms of difference sets:

A is separated by B <= (A—A)N(B—B) C{0} (8)

(If A and B are non-empty, we actually have =, not just C.)

Proof A is separated by B

— (Wxy,yeA:x#y = (x+B)Nn(y+B)=0)

& (WY €EA: (x+B)N(y+B)#0 = x=y)

— (Wx,yeA:x—yeB—-B = x=y) (by (7))
& (VzéEA—-A:2z€B—B = z=0) (z:=x—yy)
— (A—A)Nn(B—B) C{0}

O

From (8) we see that the condition of being separated by B depends not on

B but only on B — B. Thus, for example, A is separated by B iff A is separated
by —B, showing that

M(A,B) = M(A,—-B). )

A curious consequence of (8) is that A is separated by B iff B is separated
by A. We don’t usually use this because we usually take A to be a discrete,
finite set of translation vectors and B to be the unit ball of a norm (or at least, a
convex body), so the roles of A and B are quite different.

It is also interesting (but perhaps not important) that the set (A—A)N(B—B)
occurs both in (8) and in (4).
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We can pass between coverings and separated points by the following in-
equalities for M (A, B), which resemble (4):

N(A,B—B) < M(A,B) < N(A,B). (10)

The left-hand inequality requires that B # @.

Proof  Upper inequality: By (9), it suffices to show that M(A,B) < N(A,—B).
For this, note the obvious fact that

x€Et+B < tex—B.
Consequently,
X€ (s+B)N(t+B) & {s,t} Cx—B.

That is, the intersection of two translates of B is exactly the set of reference
points for which a translate of —B covers the two given reference points. So
if T C A and T is separated by B, so that the translates t + B (for t € T) are
pairwise disjoint, then no two points in T can be covered by the same translate
of —B; therefore any cover of T (and thus any cover of A) by translates of —B
needs at least card(T) points. Thus M(A,B) < N(A,—B).

Lower inequality: Let T C A be a set separated by B and maximal for these
conditions. (If no such set exists, then M(A,B) = oo and we are done.) By
maximality, we have

(Vae A\T:FteT: (a+B)N(t+B) £ 9)

& (Va€e A\T:JteT:a—t€B—B) (by (7))
& (Vae A\T:3dteT:ae€t+B—B)

& A\TCT+B-B

Since B # @, wehave 0 € B—B, whence T C T+B—B. Thus A = (A\T)UT C
T + B — B, showing that N(A, B — B) < card(T). O

We can get the difference set B — B on the right-hand side of (10) as well, if
B is convex. For this, first note that

1(B—B)—1(B—B)=1B—IB— 1B+ 1B

with equality when B is convex. Thus

(A—=A)N(3(B—B)—3(B—B)) 2 (A—-A)N(B—B),
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with equality when B is convex. By (8), it follows that
A is separated by $(B —B) = A is separated by B,
and the converse holds if B is convex. Thus
M(A, %(B —B)) < M(A,B), with equality when B is convex. (11)
Combining the equality situation with (10) yields

N(A,B—B) < M(A,B) < N(A,%(B —B)) if Bis convex. (12)

4 Volume estimates

In this section, assume all relevant sets are measurable and of positive, finite
measure.

The most basic volume estimate for covering numbers is given by noting
thatif A C T + B, then

vol(A) < vol(T+B) = vol ( | J(t+B)) < Y vol(t+B) = card(T) vol(B) .

teT teT
This shows that IA)
VO
< .
For M(A, B), we have
vol(A) vol(A + B)
— < B —= 14
vol(B—B) — M(A,B) < vol(B) (14)

Proof  The upper estimate follows by noting that if T C A and T is separated
by B, then the translates t + B for t € T are disjoint, so that

card(T) vol(B) = vol(T + B) < vol(A + B) .

The lower estimate follows by (13) and (10). O

Examples  Conspicuously missing in (13) is an upper estimate for N(A, B) in
terms of volumes. To illustrate some techniques for obtaining such estimates,
we consider N(K, eK), where K is a convex body and 0 < e < 1.

1. First, the lower bound. By (13), we have

vol(K)  (1\"
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2. If K is symmetric, then eK = 5K — $K, so we can use the upper estimate

on M:

N(K, eK) = N(K, £K — £K)

< M(K, 3K) (by (10))
vol(K + 5K)
< T%) (by (14))
_ (1+35)"
(5
(3
€
< (3)“ (since e < 1)
€

3. If K is not symmetric, we can replace €K with something symmetric and
smaller, and then use the same technique as in the previous item. Thus

vol(K + 5 (KN —K))
vol(5(Kn—K))
vol(K + $K) < (1 2)“ vol(K)
S Vol(E(Kn—K)) = vol(K N —K) °

N(K, eK) < N(K, e(KNn—K)) <

€
Nothing in this argument so far uses the choice of origin; so now we
choose the origin to minimize vol(K)/vol(K N —K). From [10] we know
that if we choose the origin randomly inside K then this ratio has ex-

pected value 2™; from [5] we know that if we take the centroid of K as the
origin then this value is at most 2™. Thus we get

N(K, eK) < <z+i)n < (i)n .

4. We can also use the Rogers—Zong lemma [9], which asserts that if K and
L are convex bodies then

vol(K — L)

N(K,L) < 6(L) voll)

where O(L) is the “covering density” of L. (If we cover R™ by translates
of L in the most economical way, the density of the resulting covering is
O(L); if L tiles R™ then O(L) = 1; if the covering has some overlap between
translates of L then 0(L) > 1.) Furthermore, from [7] we have

O(L) <7nlogn.
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(See the next section for a little more information about these results.)
Finally, the Rogers—Shephard inequality [8] asserts that

vol(K—L)vol(KNL) < (T) vol(K) vol(L) .

Putting all this together yields

N(K, eK) < 8(eK)

vol(K — eK) ®) <2n) vol(K) vol(eK)
vol(eK) n /) vol(eK) vol(K N eK)

ca(2) () st ()

5. The Rogers—Zong lemma also applies when K is symmetric; a computa-
tion similar to the above (but slightly simpler) yields

N(K,eK) < 7nlogn (2)
in this case.

Volume estimates can also be obtained using measures other than Lebesgue
measure. An argument by Talagrand is of this type, and shows

M(B},K) < 2e2UK)° ifKisa symmetric convex body, (15)

where {(K) is the gaussian average of the K-norm, that is,
) = | il dvn(x).
R“
Now, {(K) ~ /nM(K) (see [11], p.24), so combining (15) with (10) yields

N(BE,K) < 2ecnMK)* (16)

This is known as the dual Sudakov inequality. (See [6]. The proof given below
is a later one by Talagrand; see [3], pp. 82-83. For a slightly more general
version, see [4], Lemma 4.)
The argument for (15) (given below) requires that K be symmetric, but sym-
metry is not essential in (16); indeed,
)Z

N(B}, K) < N(BF, KN —K) < 2eemMKN=K)"

and

MK —K) = [ [0l dof@) = [ (18l Vo]l dofo)

< an71 (He”K + ||9||_K) do‘(e) — ZM(K) ,

Steven Taschuk - 2010 July 10 - http://www.amotlpaa.org/math /sem201003.pdf 7


http://www.amotlpaa.org/math/sem201003.pdf

so for asymmetric bodies we obtain (16) with a slightly worse constant.
Now to prove (15).

Proof Letr > 0 be chosen later. Let T C rBY} be such that {t + rK: t € T} are
pairwise disjoint and card(T) < M(rBY, rK) = M(B%, K). Then

12> yn(T+71K)

= Z Yn(t+71K)
teT
_ ZJ’ eflx‘z/z dX
teT JtHrK (2m)n/2
_ ZJ o Ix+tl?/2 dx
teT TK (27-[)71/2
_ N o2 [ gty pmixitsz 9%
-3 || e S
e /ZJ ~051) gy, (x)
teT
_ Z e Itl? /2y (TK)Ee™ (X,t)
teT

(where X is a standard gaussian random variable truncated to rK)

> Z e 1t /2y (vK)e EXH (Jensen'’s inequality)
teT

_ Ze—ltl /2y (rK)e (oot (X is symmetric)
teT

=Y e 2y, (1K)
teT

> card(T)e_rz/zyn(rK) (since T C rBY})

Finally, taking r = 2¢(K), we have vy, (vK) > % by Markov’s inequality, and so

erZ/Z

Yn(TK)

card(T) < < 2e2UK)?

5 Covering density

Here we sketch the proofs of the Rogers—Zong lemma [9] (which estimates cov-
ering numbers using covering density) and the 1957 result of Rogers [7] (which
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estimates covering density). I omit all details, and even some crucial defini-
tions, such as that of covering density itself. Intuitively, 6(K) is the density of
the most economical covering of R™ by translates of K. (For precise definitions,
see [7], or [1], §1.1.) What matters for us is that if T is the set of reference points
for the most economical covering R™ = T + K, then for any set A, the translates
of A contain on average (in some sense) 0(K) vol(A)/vol(K) points of T.

If K and L are convex bodies in R™ then

vol(K — L)

N(K,L) <6(L) vol(L)

(17)
Proof sketch  Let R™ = S+4-L be a covering of R™ by translates of L, with density
O(L). Then, for any t € R™, t + K C S + L. But we do not need all the translates
given by S to cover a particular t + K; the translates that matter are:

s+ Lmatters < (s+L)N(t+K)#£2
— s—teK-L
& set+K-L

Thus we can cover t + K with card(S N (t + K — L)) translates of L. We wish to
choose t to make card(S N (t + K — L)) small; as discussed a moment ago, on
average (in some sense) this quantity is 6(L) vol(K — L)/ vol(L). O

If K is a convex body in R™, n > 3, then
0(K) <nlogn +nloglogn +5n. (18)

Proof sketch  Tile R™ with large cubes, say of side length R, and cover each
cube as follows. First choose N translates of K randomly (N large, chosen later),
obtaining Ty + K, card(T;) = N. (These translates cover at least 1 — e N/R" of
the cube, if we assume wlog that vol(K) = 1.) Then pack the uncovered space
with translates of —8K (& small, chosen later), obtaining T, — 6K, card(T) = M.
(Bound M by a volume argument.) By the maximality of the packing, all points
in the cube are either close to a copy of K from Ty or a copy of —6K from T,.
It can then be shown that (T; U T;) + (1 + 6)K covers the cube, with density
(T4 8)™(N 4+ M)/R™. A suitable choice of parameters 5, N, M, R yields the
desired estimate. O

See chapter 1 of [1] for comprehensive information about covering density.

6 Small sections from covering by the ball

Here we show that if a convex body is small in the sense that it can be cov-
ered by not too many copies of B}, then it is small in the sense that it has
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k-dimensional sections that are contained in balls that are not too large. More
precisely:
If K is a convex body in R™
and A € R is such that N(K,B})!/™ < A,
then for any k € [1..n), (19)
there exists E € G x
such that KN E C (24A)"/0~%) (B} N E).

(Here Gy, x denotes the set of k-dimensional subspaces of R™, and [1..n) =
Z N [1,n).) Note that the size of the sections in the conclusion depends only on
the covering parameter A and on the proportion £ between the dimension of
the section and the dimension of the whole space.

The statement (19) closely resembles the volume ratio theorem (see [11], §3);
the constants are different, and the hypothesis involves covering numbers in-
stead of volumes, but otherwise they are the same. So we suspect that we could
prove (19) by transforming the hypothesis N(K,B})"/™ < A into a statement
comparing vol(K) and vol(BY}) (presumably using the estimates of §4) and then
applying the volume ratio theorem. The only difficulty with this plan is that
the volume ratio theorem requires K O BY} (so that || - ||k is Lipschitz, a fact
which plays an essential role in the proof), and we do not have this in (19). The
maneuver which avoids this problem is to replace K with K + B}

Proof LetKand A be as in (19). Then

vol(K + BY})
Trvolpy) < N(K+BE,287) < N(KBFN(BE, BY) <A™

Thus B} C K+ B} and (vol(K + BY)/ Vol(Bg))l/“ < 2A. The volume ratio
theorem then yields sections such as described in (19). O

In fact we can deduce the volume ratio theorem from (19) as well (again,
except for the exact constants): if K O B% and (vol(K)/ Vol(BE))V " < A then

N(K,BY) < M(K, %B?) (B3 is symmetric and convex)
vol(K + 1BY)
Vol(%Bg)
vol(K + $K)
VOI(%B?)
vol(K)
vol(BY)
< (BA)"

(since B} C K)

_ 2N

Applying (19) then yields sections as desired.
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We now give a direct proof of (19), using ideas similar to those in the proof
of the volume ratio theorem. We will in fact show that subspaces such as de-
scribed not merely exist, but that a random subspace has this property with
high probability.

Proof  Letr > 0 be chosen later.

(The idea: If T is small enough, then TK N S™~! has small measure, since
convex bodies are spiky. A random subspace E will miss TK N S™~!, and so
TK N E does not meet S™ !, whence TKNE C B} NE.)

Fix Eg € Gn k. Choose Q € O(n) randomly according to the Haar proba-
bility measure. Then

P(QEy meets TK N S™ 1)

=P(30 € S™ ' NEo: Q6 € 7K)

<P(30 € A: dist(QO,rK) < 1) (let A be an r-net for S™~' N Ey)
=TP(30 € A: QO € K) (set K = (rK +rB})nsS™ 1)

< card(A)o(K)

where, as usual, o denotes the uniform probability measure on sn-1,

To show existence, then, we want card(A)o(K) < 1, while to show high
probability, we want card(A)o(K) < 1.

We can choose A such that

1 1

card(A) < < (v

ok (cap of Euclidean radius 7)

where oy denotes the uniform probability measure on S*~' (see [11], p.20). To

estimate o(K), first note that
K= (rK+rBy)ns™
C (T+ 1B} +rBF)nS™!
= (T+2rB})ns™!

This last set is the union of card(T) caps, each of radius at most cr. Indeed, if
teTand 0 € (t+2rB}) NS then

t
‘6 — |t|‘ =2 sin(% arcsin dist(6, span {t}))
<2 sin(% arcsin 2r) (since 6 € t + 2rBY)
< arcsin 2r (since sinx < x for x > 0)
<mr (since arcsin is convex on [0, 1])
Therefore

O‘(E) < card(T)on (cap of radius cr) < A™(er)™ T
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(At this point we see why this strategy works: on the one hand, making r
smaller means we need more points in A so we have more chances to hit K; on
the other, making r smaller means K gets smaller and so easier to miss; but A is
getting bigger at a rate like 1! while K is getting smaller at a rate like 1/77,
so the latter phenomenon wins.)

Putting it altogether, we have

P(QEo meets TK N S™ 1) < (cA)M K,

For existence, then, we require (cA)"Mr—k < 1, that is,

(cA)/0-%) <

4

==

so we take such . For high probability, we may require, say, (cA)"r" % < 5.,
that is, (2cA)™r™ % < 1, which is the same condition as for existence, except
for the constant. O

7 Large sections from covering of the ball

Here we prove a statement which is, in spirit at least, dual to (19). We will
show, more or less, that if a convex body is large in the sense that not too many
copies of it are needed to cover BY, then it is large in the sense that it has k-
dimensional projections that contain large balls. The statement will, however,
not be as strong as this suggests, since our hypothesis will require more infor-
mation about covering, and the conclusion is subject to a few conditions. The
precise statement:

There is a constant ¢ > 0 such that

if Kis a convex body in R™

and A € R is such that Vr > 0: N(BY, 1K) < 2eAn/7,

then for any k € N such thatk <n —cy/n, (20)
there exists E € G x

2
k
such that proj, K 2 ﬁ (1 - \/:> proje BS.

(My presentation here is based on [4], which gives generalizations of this type
of statement for quasi-convex bodies; see that paper for references to previous
results.)

The main hypothesis in (20) is a control on how fast the covering number
grows as the covering body shrinks. This hypothesis is not too strange, in view
of (16), which implies such an inequality with A = cM(K)?.

The main condition on the conclusion in (20) is that the dimension of the
subspace onto which we project is not entirely arbitrary, e.g., we cannot have

Steven Taschuk - 2010 July 10 - http://www.amotlpaa.org/math /sem201003.pdf 12


http://www.amotlpaa.org/math/sem201003.pdf

k = n — 1. Still, if we are only concerned with the proportion £, the condition
is not severe, since we can make any desired proportion allowable by taking n
large enough. (More precisely: for any A € (0, 1), if n is sufficiently large, then
for any k < An there exist projections as in (20).)

To prove (20) we need two lemmas. First, a statement from [11], p.18: Sup-
pose A C R™ is bounded, K C R™ is closed and convex, and 0 < A < 1. Then

AC(1—ANK+A = ACK.
An immediate corollary is that, with the same assumptions on A, K, and A,
ACK+AM = (1—-ANACK. (21)

Second, we need the following result of Johnson and Lindenstrauss ([2],
Lemma 1), which asserts if you have a collection of (not too many) points in
R™, then for most projections, the images of these points are all about the same
length. To be precise:

There is a constant ¢ > 0 such that

forany e >0,n e N,and k € [1..n],

if N < ecke?)

then for any points (x;)} in R™,

and any orthogonal projection P of rank k, (22)
we have u(Q € O(n): (Vi € [1..N]: [PQxi| & Dy ilxi)) > 1—2e~ck¢’,
where Dy i = T(3)T(51) /T (2)T(%),

u is the Haar probability measure on O(n),

and x ~ y means that (1 —e)y <x < (1+¢€)y.

First note that [PQxi| = |Q~'PQxil, and if Q ranges over O(n), then Q~'PQ
ranges over all projections of rank k; thus Q' PQ is a natural implementation
of a “random projection”.

Next, note that Dy, i = E[P6|, where 6 is uniformly distributed on ST and
P is any orthogonal projection of rank k. (This expected value can be computed
by changing the integral over the sphere into a gaussian integral; see [11], p.23)

By Stirling’s approximation, Dy, i ~ \/g as k,n — oo, and in fact,

1 /k [k
= *<Dn,k< —.
2V n n

Proof sketch ~ Fix P. The function S 5 R,0 — |PO|is Lipschitz, so it concen-
trates around its average:

o(0€S™": |IPOl — Dy x| > t) < cemomt.
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Taking t = €Dy, x yields
o@e S POl > (1+ €)Dn ) < ce—nDr e < ce—cke’
Thus, for fixed 8 € S,
1(Q € O(n): [PQO| > (1 + €)Dy i) < ce ke’
and so for fixed (6;)) c S™ T,
1(Q € O(m): (3i: [PQOi| > (14 €)Dy k) < cNe k€
so that if N < e°%¢*/2 then we obtain the desired estimate. O

Now we can prove (20).

Proof  Let ¢’ be the constant from (22). Let K and A be as in (20). Assume

Vk < yn— 81“

e—1 1 1
T2 Dk ’

Note that € > 0 and that c’e2k > 21In2. Let r be such that 2eA™/™" = e¢'e’k,

note that
\/ An \/ 2An /ZA
T= <
c'e2k—1In2 clelk

Let T C R™ be such that T C B} C T + rK and card(T) < ec’¢’k Note that
2e~¢'¢** < 1. Thus (22) yields an orthogonal projection P of rank k such that,
forallt € T, |Pt| < (14 €)Dqn klt], and so PT C (1 4+ €)Dy kBY. Therefore

Set

PBY C PT 4 PK C (1 + €)D,  PB} + PK.

Since (1 + €)Dqn,x < 1, it follows by (21) that

PK D 1(1— (1+€)Dn,x)PBY

CI
ZA ]— ]+€ T‘Lk)PBZ

The value of € was chosen to minimize this expression; plugging it in yields
(for suitable constant c)

as desired. O
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