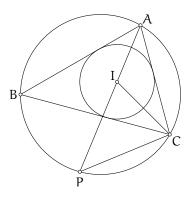
An observation on incentres

Given a triangle $\triangle ABC$, bisect $\angle A$ and extend that bisector to intersect the circumcircle of $\triangle ABC$ at P. Also bisect $\angle C$, and extend that bisector to intersect AP at I. Since I is the intersection of the (internal) angle bisectors, it is the incentre of $\triangle ABC$ (Euclid IV:4).



Join PC. I claim that PC = PI. Indeed,

$$\angle PIC = \angle IAC + \angle ACI$$
 ($\angle PIC$ an exterior angle of $\triangle IAC$; Euclid I:32)
 $= \angle PAC + \angle ACI$ ($\angle PAB + \angle ACI$ ($\angle PAB + \angle ACI$ ($\angle PAB + \angle ACI$)
 $= \angle PCB + \angle ACI$ ($\angle PAB + \angle ACI$) ($\angle PAB + \angle ACI$)
 $= \angle PCB + \angle BCI$ (CI bisects $\angle ACB$)
 $= \angle PCI$

and so PC = PI as sides opposite equal angles in \triangle PCI (Euclid I:6).

Exercise: Show that the segment joining the incentre to one of the excentres is bisected by the circumcircle.

Exercise: Construct a triangle, given its inradius, its circumradius, and one of its angles.¹

Exercise: Given a triangle $\triangle ABC$, bisect each angle and extend those bisectors to intersect the circumcircle of $\triangle ABC$ at points A', B', and C'. Prove that the orthocentre of $\triangle A'B'C'$ is the incentre of $\triangle ABC$.

¹Problem 1.19.1, George Pólya, *Mathematical Discovery: on understanding, learning, and teaching problem solving* (New York: Wiley, 1981), 185. (Among other places.)